Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Oxygen-dependent proteolysis is the primary means of regulating the hypoxia-inducible factor (HIF) family of transcription factors. The alpha-subunit of HIF factor 1 (HIF-1) contains two highly conserved oxygen-dependent degradation domains (402 ODD and 564 ODD), each of which includes a proline that is hydroxylated in the presence of oxygen, allowing the von Hippel-Lindau (VHL) E3 ubiquitin ligase to interact and target HIF-1alpha to the proteasome for degradation. Mutation of either proline is sufficient to partially stabilize HIF-1alpha under conditions of normoxia, but the specific contributions of each hydroxylation event to the regulation of HIF-1alpha are unknown. Here we show that the two ODDs of HIF-1alpha have independent yet interactive roles in the regulation of HIF-1alpha protein turnover, with the relative involvement of each ODD depending on the levels of oxygen. Using hydroxylation-specific antibodies, we found that under conditions of normoxia proline 564 is hydroxylated prior to proline 402, and mutation of proline 564 results in a significant reduction in the hydroxylation of proline 402. Mutation of proline 402, however, has little effect on the hydroxylation of proline 564. To determine whether the more rapid hydroxylation of the proline 564 under conditions of normoxia is due to a preference for the particular sequence surrounding proline 564 or for that site within the protein, we exchanged the degradation domains within the full-length HIF-1alpha protein. In these domain-swapping experiments, prolyl hydroxylase domain 1 (PHD1) and PHD2 preferentially hydroxylated the proline located in the site of the original 564 ODD, while PHD3 preferred the proline 564 sequence, regardless of its location. At limiting oxygen tensions, we found that proline 402 exhibits an oxygen-dependent decrease in hydroxylation at higher oxygen tensions relative to proline 564 hydroxylation. These results indicate that hydroxylation of proline 402 is highly responsive to physiologic changes in oxygen and, therefore, plays a more important role in HIF-1alpha regulation under conditions of hypoxia than under conditions of normoxia. Together, these findings demonstrate that each hydroxylated proline of HIF-1alpha has a distinct activity in controlling HIF-1alpha stability in response to different levels of oxygenation.

Original publication

DOI

10.1128/MCB.25.15.6415-6426.2005

Type

Journal article

Journal

Mol Cell Biol

Publication Date

08/2005

Volume

25

Pages

6415 - 6426

Keywords

Animals, Cattle, Cell Line, Humans, Hydroxylation, Hypoxia-Inducible Factor 1, alpha Subunit, Kinetics, Mice, Mice, Knockout, Mixed Function Oxygenases, Mutation, Oxidative Stress, Oxygen, Proline, Protein Structure, Tertiary, Transcription Factors