Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: The aim of this study was to update the incidence data of beta thalassaemia mutations in various populations and compare it to the spectrum of mutations in the United Kingdom (UK) population in order to determine the impact of immigration. DESIGN AND METHODS: Published data for the beta-thalassaemia mutation spectrum and allele frequencies for 60 other countries was updated and collated into regional tables. The beta-thalassaemia mutations in the UK population have been characterised in 1712 unrelated carriers referred for antenatal screening. Similarly, the alpha-thalassaemia mutations in the UK population have been characterised in 2500 possible alpha-thalassaemia carriers. RESULTS: A total of 68 different beta-thalassaemia mutations were identified in couples requiring screening for antenatal diagnosis in the UK population. Of these mutations, 59 were found in immigrants to the UK, from all major ethnic groups with a high incidence of haemoglobinopathies. A total of 40 different alpha-thalassaemia mutations were characterised in the UK population. Ten deletion mutations were identified, including all the Southeast Asian and Mediterranean alpha(0)-thalassaemia mutations. In addition, 30 non-deletion alpha(+)-thalassaemia mutations were discovered, accounting for 46% of the worldwide known non-deletion mutations. CONCLUSIONS: The impact of immigration has resulted in the UK population having a higher number of beta-thalassaemia mutations and alpha-thalassaemia mutations than any of the 60 other countries with a published spectrum of mutations, including both endemic countries and the non-endemic countries of Northern Europe. The racial heterogeneity of the immigrant population in a non-endemic country significantly increases the spectrum of haemoglobinopathy mutations and their combinations found in individuals, making the provision of a molecular diagnostic prenatal diagnosis service more challenging.

Original publication




Journal article


Clin Biochem

Publication Date





1745 - 1756


Africa South of the Sahara, Asia, Emigration and Immigration, Europe, Hemoglobinopathies, Humans, Incidence, Mediterranean Region, Middle East, Mutation, Population Groups, beta-Thalassemia