Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have used quantitative DNase I footprinting and UV-melting studies to examine the formation of DNA triplexes in which the third strand thymines have been replaced by 5-propargylamino-dU (UP). The intra-molecular triplex A6-L-T6-L-(UP)5T (L = two octanediol residues) shows a single UV-melting transition which is >20 degrees higher than that of the parent triplex A6-L-T6-L-T6at pH 5.5. Although a single transition is observed at all pHs, the melting temperature (Tm) of the modified oligonucleotide decreases at higher pHs, consistent with the requirement for protonation of the amino group. A similar intramolecular triplex with a longer overhanging duplex shows two melting transitions, the lower of which is stabilised by substitution of T by UP, in a pH dependent fashion. Triplex stability increases by approximately 12 K for each T to UP substitution. Quantitative footprinting studies have examined the interaction of three UP-containing 9mer oligonucleotides with the different portions of the 17mer sequence 5'-AGGAAGAGAAAAAAGAA. At pH 5.0, the UP-containing oligo-nucleotides footprint to much lower concentrations than their T-containing counterparts. In particular (UP)6CUPT binds approximately 1000-fold more tightly than the unmodified oligonucleotide T6CTT. Oligonucleotides containing fewer UP residues are stabilised to a lesser extent. The affinity of these modified third strands decreases at higher pHs. These results demonstrate that the stability of DNA triplexes can be dramatically increased by using positively charged analogues of thymine.


Journal article


Nucleic Acids Res

Publication Date





1802 - 1809


DNA, DNA Footprinting, Deoxyuridine, Thymidine, Ultraviolet Rays